Cargo surface hydrophobicity is sufficient to overcome the nuclear pore complex selectivity barrier.
نویسندگان
چکیده
To fulfil their function, nuclear pore complexes (NPCs) must discriminate between inert proteins and nuclear transport receptors (NTRs), admitting only the latter. This specific permeation is thought to depend on interactions between hydrophobic patches on NTRs and phenylalanine-glycine (FG) or related repeats that line the NPC. Here, we tested this premise directly by conjugating different hydrophobic amino-acid analogues to the surface of an inert protein and examining its ability to cross NPCs unassisted by NTRs. Conjugation of as few as four hydrophobic moieties was sufficient to enable passage of the protein through NPCs. Transport of the modified protein proceeded with rates comparable to those measured for the innate protein when bound to an NTR and was relatively insensitive both to the nature and density of the amino acids used to confer hydrophobicity. The latter observation suggests a non-specific, small, and plant interaction network between cargo and FG repeats.
منابع مشابه
The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion.
Nuclear pore complexes (NPCs) restrict the nucleocytoplasmic flux of most macromolecules, but permit facilitated passage of nuclear transport receptors and their cargo complexes. We found that a simple hydrophobic interaction column can mimic the selectivity of NPCs surprisingly well and that nuclear transport receptors appear to be the most hydrophobic soluble proteins. This suggests that surf...
متن کاملKaryopherin-independent spontaneous transport of amphiphilic proteins through the nuclear pore.
Highly selective nucleocytoplasmic molecular transport is critical to eukaryotic cells, which is illustrated by size-filtering diffusion and karyopherin-mediated passage mechanisms. However, a considerable number of large proteins without nuclear localization signals are localized to the nucleus. In this paper, we provide evidence for the spontaneous migration of large proteins in a karyopherin...
متن کاملNup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity
Nuclear pore complexes (NPCs) conduct massive transport mediated by shuttling nuclear transport receptors (NTRs), while keeping nuclear and cytoplasmic contents separated. The NPC barrier in Xenopus relies primarily on the intrinsically disordered FG domain of Nup98. We now observed that Nup98 FG domains of mammals, lancelets, insects, nematodes, fungi, plants, amoebas, ciliates, and excavates ...
متن کاملBrownian Dynamics Simulation of Nucleocytoplasmic Transport: A Coarse-Grained Model for the Functional State of the Nuclear Pore Complex
The nuclear pore complex (NPC) regulates molecular traffic across the nuclear envelope (NE). Selective transport happens on the order of milliseconds and the length scale of tens of nanometers; however, the transport mechanism remains elusive. Central to the transport process is the hydrophobic interactions between karyopherins (kaps) and Phe-Gly (FG) repeat domains. Taking into account the pol...
متن کاملLarge cargo transport by nuclear pores: implications for the spatial organization of FG-nucleoporins.
Nuclear pore complexes (NPCs) mediate cargo traffic between the nucleus and the cytoplasm of eukaryotic cells. Nuclear transport receptors (NTRs) carry cargos through NPCs by transiently binding to phenylalanine-glycine (FG) repeats on intrinsically disordered polypeptides decorating the NPCs. Major impediments to understand the transport mechanism are the thousands of FG binding sites on each ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The EMBO journal
دوره 28 18 شماره
صفحات -
تاریخ انتشار 2009